Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
(1) Background: Musculoskeletal trauma from combat wounds, accidents, or surgeries is highly associated with infections and hospitalization. The current “gold standard” for such injuries when access to hospitals is limited is administering antibiotics and opioids; however, they are not ideal treatments due to their contributions to antibiotic resistance and the opioid epidemic. Electrospun chitosan acylated with lipids and loaded with hydrophobic drugs has been shown to release the therapeutics systemically and to prevent infections. (2) Methods: Electrospun chitosan membranes (ESCMs) were fabricated and acylated using decanoyl chloride. FTIR was used to confirm acylation through the presence of ester bonds and acyl chains. ESCMs were loaded with the quorum-sensing molecule cis-2-decenoic acid (C2DA) and the local anesthetic bupivacaine and then implanted in rat femurs for 3 days. Afterward, the rats were euthanized, and CFUs were measured on retrieved bone, tissue, and treatment material. (3) Conclusions: While ESCMs prevented bacterial growth on the surface of the material, controls outperformed treatment groups. This is possibly due to bupivacaine’s role in inhibiting sodium channels, which favors the production of Th2-type cytokines associated with immune response suppression. Furthermore, ESCMs provide a large surface area for bacteria to grow on and form bridges between nanofibers.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P.aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.more » « less
An official website of the United States government
